Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(17): 50675-50689, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36800092

RESUMO

The general objective of this study is to identify the presence of hazardous elements in the soils of five urban cemeteries in the city of Passo Fundo, in southern Brazil, and to design solutions (architecturally) for future cemeteries to be more sustainable by mitigating toxicological risks to the population residing in the area. A total of 250 soil samples were obtained from points within the cemeteries and in areas surrounding the two oldest cemeteries at a distance of up to 400 m. Twelve architects who design cemeteries primarily focused on sustainability were interviewed, and presented their suggestions for sustainable urban cemetery design. The Building Information Modeling (BIM) computer modeling system was utilized to present a visual representation of suggested architectural features by these architects. The concentration of Pb in the vicinity of cemeteries deserves special attention, as concentrations of this neurotoxin exceed the federal limits set by Brazil. Soil Pb values were found to exceed the limit of 72 mg kg-1 up to a distance of 400 m from the walls of cemeteries A and B, indicating the presence of a danger to human health even at greater distances. This manuscript highlights construction features that enable future burial structures to adequately mitigate the very real problem of contaminants entering the environment from current cemetery design. Two-thirds of the technicians interviewed for this manuscript, each of whom specialize in Brazilian cemetery design, highlighted the importance of revitalizing urban vegetation both when constructing and revitalizing urban vertical cemeteries.


Assuntos
Cemitérios , Chumbo , Humanos , Solo , Cidades , Brasil
2.
Mar Pollut Bull ; 187: 114525, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36580843

RESUMO

The Tinto River is known globally for having a reddish color due to the high concentration of dissolved metals in its waters. The general objective of this study is to analyze the dispersion of nanoparticles (NPs) and ultra-fine particles in terrestrial and geospatial suspended sediments (SSs) using Sentinel-3B OLCI (Ocean Land Color Instrument) satellite images; by examining water turbidity levels (TSM_NN), suspended pollution potential (ADG_443_NN) and presence of chlorophyll-a (CHL_NN). The images were collected in the estuary of the Tinto River, in the city of Nerva, Spanish province of Huelva, between 2019 and 2021. The following hazardous elements were identified in nanoparticles and ultra-fine particles by FE-SEM/EDS: As, Cd, Ni, V, Se, Mo, Pb, Sb and Sn. Sentinel-3B OLCI satellite images detected a 2019 TSM_NN of 23.47 g-3, and a 2021 reading of 16.38 g-3.


Assuntos
Rios , Poluentes Químicos da Água , Estuários , Metais/análise , Clorofila A , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Sedimentos Geológicos
3.
Environ Dev Sustain ; 24(9): 10728-10751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34658662

RESUMO

The increasing mortality of COVID-19 can aggravate soil contamination by metals, harmful to the health of the population, requiring new projects for future cemeteries capable of mitigating these impacts to the environment, justifying the importance of studying the concentrations of metals in the soil of urban cemeteries. The paper analyzed the levels of metals in the soil of urban cemeteries in the City of Carazinho, in the state of Rio Grande do Sul, located in southern Brazil, considering the increase in deaths by COVID-19, for the purpose of future projects for cemeteries aimed at mitigating the impacts generated on the environment. The soils of the three urban cemeteries in Carazinho were sampled, with 5 internal and external points, with 3 repetitions at depths of 0-20 and 20-40 cm, adding 180 samples to measure the concentrations of Fe, Mn, Cu, Zn, Cr and Pb (g kg-1), considering the analytical sequence: (1) analysis in triplicate with mean deviation (RDS); (2) R2 of the analytical curve; (3) traceability of the pattern of each metal; (4) quantification limit of each metal (QL), with the performance of nitroperchloric digestion of the samples and the determinations of metals by flame modality atomic absorption spectrometry. Quantitative data on deaths by COVID-19 were analyzed by univariate modeling of time series, in the integrated autoregressive moving averages model. The results of this study were made available to fifteen architects, who attributed future solutions for environmentally sustainable cemeteries. The results showed high levels of copper (Cu) and iron (Fe) in the soil of the cemeteries studied. Considering the increase in deaths and subsequent burials per COVID-19 revealed a prediction for the death toll of 6,082,306 for June 9, 2022, it is assumed that metal contamination can reach even higher levels. To mitigate these levels of contamination by metals, 80% of the architect respondents expressed their preference for a vertical cemetery, with treatment of gases and effluents to mitigate environmental impacts.

4.
Geosci Front ; 13(6): 101279, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38620951

RESUMO

The novel coronavirus, SARS-CoV-2, has the potential to cause natural ventilation systems in hospital environments to be rendered inadequate, not only for workers but also for people who transit through these environments even for a limited duration. Studies in of the fields of geosciences and engineering, when combined with appropriate technologies, allow for the possibility of reducing the impacts of the SARS-CoV-2 virus in the environment, including those of hospitals which are critical centers for healthcare. In this work, we build parametric 3D models to assess the possible circulation of the SARS-CoV-2 virus in the natural ventilation system of a hospital built to care infected patients during the COVID-19 pandemic. Building Information Modeling (BIM) was performed, generating 3D models of hospital environments utilizing Revit software for Autodesk CFD 2021. The evaluation considered dimensional analyses of 0°, 45°, 90° and 180°. The analysis of natural ventilation patterns on both internal and external surfaces and the distribution of windows in relation to the displacement dynamics of the SARS-CoV-2 virus through the air were considered. The results showed that in the external area of the hospital, the wind speed reached velocities up to 2.1 m/s when entering the building through open windows. In contact with the furniture, this value decreased to 0.78 m/s. In some internal isolation wards that house patients with COVID-19, areas that should be equipped with negative room pressure, air velocity was null. Our study provides insights into the possibility of SARS-CoV-2 contamination in internal hospital environments as well as external areas surrounding hospitals, both of which encounter high pedestrian traffic in cities worldwide.

5.
Mar Pollut Bull ; 173(Pt A): 112925, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34534938

RESUMO

The analysis of marine matter using the Sentinel-3B OLCI (Ocean Land Color Instrument) satellite is the most advanced technique for evaluating: the absorption of colored detrital and dissolved material (ADG_443_NN), total suspended matter concentration (TSM_NN) and of chlorophyll-a (CHL_NN) on a global scale. The objective is to analyze ADG_443_NN, TSM_NN and CHL_NN using the Sentinel-3B OLCI satellite and the presence of Fe-nanoparticles (NPs) + hazardous elements (HEs) in suspended sediments (SSs) in the maritime estuary of the Colombian city of Barranquilla. The study used the unpublished image of the Sentinel-3B OLCI satellite in the evaluation of ADG_443_NN, TSM_NN and CHL_NN in 72 sampled points. Subsequently, 36 samples of SSs were carried out in the Magdalena River, in the identification of Fe-NPs by advanced electron microscopies. The Sentinel-3B satellite revealed particulate accumulations in OCE1 through the intensity of OLCI in ocean. There was also a high Fe-NPs intensity of SSs in the Magdalena channel, spreading contamination to large regions.


Assuntos
Estuários , Nanopartículas , Monitoramento Ambiental , Ferro , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...